Translate

Mengakses Rotary Encoder Untuk Menghitung Putaran Motor DC / DINAMO

Mengakses Rotary Encoder Untuk Menghitung Putaran Motor DC / DINAMO


            Pada kesempatan kali ini saya akan menjelaskan mengenai bagaimana cara membuat alat yang digunakan untuk menghitung jumlah putaran motor dc, fungsi dari alat ini yaitu untuk kontrol putaran motor, jadi misal ingin menggerakkan motor hanya 3 putaran atau 10 putaran saja bisa. sensor yang digunakan adalah rotary encoder, sebenarnya selain sensor rotary encoder juga bisa yaitu optocoupler atau sensor limit switch. untuk lebih jelasnya berikut adalah skema dan programnya.



a. Minimum System




b. Rotary Encoder




c. Program Bascom AVR

$regfile = "m16def.dat"
$crystal = 11059200

Config Lcdpin = Pin , Rs = Portc.0 , E = Portc.1 , Db4 = Portc.2
Config Lcdpin = Pin , Db5 = Portc.3 , Db6 = Portc.4 , Db7 = Portc.5
Config Lcd = 16 * 2

Cursor Off
Cls

Ddrb.0 = 1

Cha Alias Pind.2
Chb Alias Pind.3

Config Cha = Input
Config Chb = Input
Config Pind.6 = Output

Config Int0 = Falling
Const Debouncetime = 1

Dim Wtime As Byte
Dim Encounter As Integer
Dim Xn As Integer
Xn = 0

Set Chb

On Int0 Getencoder

Cls

Wtime = 100
Encounter = 0

Enable Interrupts
Enable Int0

Do
 Portb.0 = 1

  Set Portd.6
  Waitms Wtime
  Upperline
  Lcd "counter: " ; Encounter ; "     "
  Lowerline
  Lcd "putaran = " ; Xn

  If Encounter > 19 Then
  Incr Xn
  End If

  Reset Portd.6
  Waitms Wtime

Loop

Getencoder:
  Waitms Debouncetime
  If Cha = 0 Then
    If Chb = 0 Then Incr Encounter Else Decr Encounter
  End If
  Gifr = 64
Return

End





d. Program CV AVR (Code Vision AVR)

/*****************************************************
This program was produced by the
CodeWizardAVR V2.04.4a Advanced
Automatic Program Generator
© Copyright 1998-2009 Pavel Haiduc, HP InfoTech s.r.l.
http://www.hpinfotech.com

Project :
Version :
Date    : 6/30/2016
Author  : NeVaDa
Company : HP InfoTech s.r.l.
Comments:


Chip type               : ATmega16
Program type            : Application
AVR Core Clock frequency: 11.059200 MHz
Memory model            : Small
External RAM size       : 0
Data Stack size         : 256
*****************************************************/

#include <mega16.h>
#include <stdlib.h>
#include <delay.h>

// Alphanumeric LCD Module functions
#asm
   .equ __lcd_port=0x15 ;PORTC
#endasm
#include <lcd.h>



#define ADC_VREF_TYPE 0x40

// Read the AD conversion result
unsigned int read_adc(unsigned char adc_input)
{
ADMUX=adc_input | (ADC_VREF_TYPE & 0xff);
// Delay needed for the stabilization of the ADC input voltage
delay_us(10);
// Start the AD conversion
ADCSRA|=0x40;
// Wait for the AD conversion to complete
while ((ADCSRA & 0x10)==0);
ADCSRA|=0x10;
return ADCW;
}

// Declare your global variables here
int pulsa;
int putaran;
int dataadc;

char count[10];
char countx[10];

char temp[10];

// External Interrupt 0 service routine
interrupt [EXT_INT0] void ext_int0_isr(void)
{
// Place your code here
if(PIND.3==0)
{

if(PIND.2==0)
{
pulsa++;
}
else {
pulsa--;
}


if(pulsa > 19){
 putaran++;
 pulsa = 0;
 }
}
}




void main(void)
{
// Declare your local variables here

// Input/Output Ports initialization
// Port A initialization
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In
// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T
PORTA=0x00;
DDRA=0x00;

// Port B initialization
// Func7=Out Func6=Out Func5=Out Func4=Out Func3=Out Func2=Out Func1=Out Func0=Out
// State7=0 State6=0 State5=0 State4=0 State3=0 State2=0 State1=0 State0=0
PORTB=0x00;
DDRB=0xFF;

// Port C initialization
// Func7=Out Func6=Out Func5=Out Func4=Out Func3=Out Func2=Out Func1=Out Func0=Out
// State7=0 State6=0 State5=0 State4=0 State3=0 State2=0 State1=0 State0=0
PORTC=0x00;
DDRC=0xFF;

// Port D initialization
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In
// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T
PORTD=0x00;
DDRD=0x00;

// Timer/Counter 0 initialization
// Clock source: System Clock
// Clock value: Timer 0 Stopped
// Mode: Normal top=FFh
// OC0 output: Disconnected
TCCR0=0x00;
TCNT0=0x00;
OCR0=0x00;

// Timer/Counter 1 initialization
// Clock source: System Clock
// Clock value: Timer1 Stopped
// Mode: Normal top=FFFFh
// OC1A output: Discon.
// OC1B output: Discon.
// Noise Canceler: Off
// Input Capture on Falling Edge
// Timer1 Overflow Interrupt: Off
// Input Capture Interrupt: Off
// Compare A Match Interrupt: Off
// Compare B Match Interrupt: Off
TCCR1A=0x00;
TCCR1B=0x00;
TCNT1H=0x00;
TCNT1L=0x00;
ICR1H=0x00;
ICR1L=0x00;
OCR1AH=0x00;
OCR1AL=0x00;
OCR1BH=0x00;
OCR1BL=0x00;

// Timer/Counter 2 initialization
// Clock source: System Clock
// Clock value: Timer2 Stopped
// Mode: Normal top=FFh
// OC2 output: Disconnected
ASSR=0x00;
TCCR2=0x00;
TCNT2=0x00;
OCR2=0x00;

// External Interrupt(s) initialization
// INT0: On
// INT0 Mode: Rising Edge
// INT1: Off
// INT2: Off
GICR|=0x40;
MCUCR=0x03;
MCUCSR=0x00;
GIFR=0x40;

// Timer(s)/Counter(s) Interrupt(s) initialization
TIMSK=0x00;

// Analog Comparator initialization
// Analog Comparator: Off
// Analog Comparator Input Capture by Timer/Counter 1: Off
ACSR=0x80;
SFIOR=0x00;

// ADC initialization
// ADC Clock frequency: 691.200 kHz
// ADC Voltage Reference: AVCC pin
// ADC Auto Trigger Source: Free Running
ADMUX=ADC_VREF_TYPE & 0xff;
ADCSRA=0xA4;
SFIOR&=0x1F;

// LCD module initialization
lcd_init(16);

// Global enable interrupts
#asm("sei")

while (1)
      {
      
     
      PORTB.0 = 1;
     
      dataadc = read_adc(0);
     
       lcd_gotoxy(0,0);
       lcd_putsf("arus= ");
       itoa(dataadc,temp);
       lcd_puts(temp);
      
       lcd_gotoxy(0,1);
       lcd_putsf("Putaran= ");
       itoa(putaran,count);
       lcd_puts(count);
//       lcd_putsf(" ");
//       itoa(pulsa,countx);
//       lcd_puts(countx);
      
      };
}




e. VIDEO HASILNYA














No comments:

Post a Comment