Translate

ARDUINO Dotmatrix MAX7219 Moving Text dan Jam Digital RTC

ARDUINO Dotmatrix MAX7219 Moving Text dan Jam Digital RTC


          Pada kesempatan kali ini saya akan menjelaskan mengenai bagaimana cara membuat sebuah alat yang dapat menampilkan moving text dan jam digital secara bergantian. alat ini menggunakan modul dotmatrix max7219 dan modul rtc DS3231. untuk mikrokontroller yang digunakan adalah Arduino Uno. untuk lebih jelasnya berikut adalah daftar komponen dan programnya.



a. Arduino Uno




b. Modul Dotmatrix Max7219




c. Modul RTC DS3231






d. Program Arduino IDE

#include "LedControl.h"
#include <FontLEDClock.h>                // Font library
#include <Wire.h>          
// DS1307 clock
#include "RTClib.h"                      // DS1307 clock

//LIBRARY ledcontrol dan dotmatrix_max7219
#include <LedControl.h>   

const int numDevices = 4;      // number of MAX7219s used in this case 2
const long scrollDelay = 40;   // adjust scrolling speed
unsigned long bufferLong [14] = {0};  
LedControl lc=LedControl(12,11,10,4);//DATA | CLK | CS/LOAD | number of matrices
const unsigned char scrollText[] PROGMEM ={"   YANUAR MUKHAMMAD           "};

// pin 12 is connected to the DataIn on the display
// pin 11 is connected to the CLK on the display
// pin 10 is connected to LOAD on the display

//global variables
byte intensity = 5;                      // Default intensity/brightness (0-15)
byte clock_mode = 0;                     // Default clock mode. Default = 0 (basic_mode)
bool random_mode = 0;                    // Define random mode - changes the display type every few hours. Default = 0 (off)
byte old_mode = clock_mode;              // Stores the previous clock mode, so if we go to date or whatever, we know what mode to go back to after.
bool ampm = 1;                           // Define 12 or 24 hour time. 0 = 24 hour. 1 = 12 hour
byte change_mode_time = 0;               // Holds hour when clock mode will next change if in random mode.
unsigned long delaytime = 500;           // We always wait a bit between updates of the display
int rtc[7];                              // Holds real time clock output

int cacah;


char days[7][4] = {
  "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"
}; //day array - used in slide, basic_mode and jumble modes (The DS1307 outputs 1-7 values for day of week)
char daysfull[7][9] = {
  "Sunday", "Monday", "Tuesday", "Wed", "Thursday", "Friday", "Saturday"
};
char suffix[4][3] = {
  "st", "nd", "rd", "th"
};  //date suffix array, used in slide, basic_mode and jumble modes. e,g, 1st 2nd ...

//define constants
#define NUM_DISPLAY_MODES 3              // Number display modes (conting zero as the first mode)
#define NUM_SETTINGS_MODES 4             // Number settings modes = 6 (conting zero as the first mode)
#define SLIDE_DELAY 20                   // The time in milliseconds for the slide effect per character in slide mode. Make this higher for a slower effect
#define cls          clear_display       // Clear display

RTC_DS1307 ds1307;                              // Create RTC object

void setup() {

  Serial.begin(9600); //start serial

for (int x=0; x<numDevices; x++)
  {
    lc.shutdown(x,false);       //The MAX72XX is in power-saving mode on startup
    lc.setIntensity(x,8);       // Set the brightness to default value
    lc.clearDisplay(x);         // and clear the display
  }
  
  //initialize the 4 matrix panels
  //we have already set the number of devices when we created the LedControl
  int devices = lc.getDeviceCount();
  //we have to init all devices in a loop
  for (int address = 0; address < devices; address++) {
    /*The MAX72XX is in power-saving mode on startup*/
    lc.shutdown(address, false);
    /* Set the brightness to a medium values */
    lc.setIntensity(address, intensity);
    /* and clear the display */
    lc.clearDisplay(address);
  }

  //Setup DS1307 RTC
#ifdef AVR
  Wire.begin();
#else
  Wire1.begin(); // Shield I2C pins connect to alt I2C bus on Arduino
#endif
  ds1307.begin(); //start RTC Clock

  if (! ds1307.isrunning()) {
    Serial.println("RTC is NOT running!");
    // following line sets the RTC to the date & time this sketch was compiled
     ds1307.adjust(DateTime(F(__DATE__), F(__TIME__)));
    // This line sets the RTC with an explicit date & time, for example to set
    // January 21, 2014 at 3am you would call:
    // ds1307.adjust(DateTime(2014, 1, 21, 5, 26, 0));
  }
  
  //Show software version & hello message
  //printver();
  //set_time();
}

void loop() {
    scrollMessage(scrollText);   //scrollFont();
  
//    basic_mode();
small_mode();
//    slide(); 

}



//set time and date routine
void set_time() {

  cls();

  //fill settings with current clock values read from clock
  get_time();
  byte set_min   = rtc[1];
  byte set_hr    = rtc[2];
  byte set_date  = rtc[4];
  byte set_mnth  = rtc[5];
  int  set_yr    = rtc[6]; 

  //Set function - we pass in: which 'set' message to show at top, current value, reset value, and rollover limit.
  set_date = 10;
  set_mnth = 10;
  set_yr   = 2019;
  set_hr   = 15;
  set_min  = 49;

  ds1307.adjust(DateTime(set_yr, set_mnth, set_date, set_hr, set_min));
  
  cls();
}




//plot a point on the display
void plot (byte x, byte y, byte val) {

  //select which matrix depending on the x coord
  byte address;
  if (x >= 0 && x <= 7)   {
    address = 3;
  }
  if (x >= 8 && x <= 15)  {
    address = 2;
    x = x - 8;
  }
  if (x >= 16 && x <= 23) {
    address = 1;
    x = x - 16;
  }
  if (x >= 24 && x <= 31) {
    address = 0;
    x = x - 24;
  }

  if (val == 1) {
    lc.setLed(address, y, x, true);
  } else {
    lc.setLed(address, y, x, false);
  }
}


//clear screen
void clear_display() {
  for (byte address = 0; address < 4; address++) {
    lc.clearDisplay(address);
  }
}

//fade screen down
void fade_down() {

  //fade from global intensity to 1
  for (byte i = intensity; i > 0; i--) {
    for (byte address = 0; address < 4; address++) {
      lc.setIntensity(address, i);
    }
    delay(30); //change this to change fade down speed
  }

  clear_display(); //clear display completely (off)

  //reset intentsity to global val
  for (byte address = 0; address < 4; address++) {
    lc.setIntensity(address, intensity);
  }
}



//power up led test & display software version number
void printver() {

  byte i = 0;
  char ver_a[15] = "SUHU";
  char ver_b[15] = "ok";


  //test all leds.
  for (byte x = 0; x <= 31; x++) {
    for (byte y = 0; y <= 7; y++) {
      plot(x, y, 1);
    }
  }
  delay(500);
  fade_down();

  while (ver_a[i]) {
    puttinychar((i * 4), 1, ver_a[i]);
    delay(35);
    i++;
  }
  delay(700);
  fade_down();
  i = 0;
  while (ver_b[i]) {
    puttinychar((i * 4), 1, ver_b[i]);
    delay(35);
    i++;
  }
  delay(700);
  fade_down();
}


// puttinychar
// Copy a 3x5 character glyph from the myfont data structure to display memory, with its upper left at the given coordinate
// This is unoptimized and simply uses plot() to draw each dot.
void puttinychar(byte x, byte y, char c)
{
  byte dots;
  if (c >= 'A' && c <= 'Z' || (c >= 'a' && c <= 'z') ) {
    c &= 0x1F;   // A-Z maps to 1-26
  }
  else if (c >= '0' && c <= '9') {
    c = (c - '0') + 32;
  }
  else if (c == ' ') {
    c = 0; // space
  }
  else if (c == '.') {
    c = 27; // full stop
  }
  else if (c == ':') {
    c = 28; // colon
  }
  else if (c == '\'') {
    c = 29; // single quote mark
  }
  else if (c == '!') {
    c = 30; // single quote mark
  }
  else if (c == '?') {
    c = 31; // single quote mark
  }

  for (byte col = 0; col < 3; col++) {
    dots = pgm_read_byte_near(&mytinyfont[c][col]);
    for (char row = 0; row < 5; row++) {
      if (dots & (16 >> row))
        plot(x + col, y + row, 1);
      else
        plot(x + col, y + row, 0);
    }
  }
}



void putnormalchar(byte x, byte y, char c)
{

  byte dots;
  //  if (c >= 'A' && c <= 'Z' || (c >= 'a' && c <= 'z') ) {
  //    c &= 0x1F;   // A-Z maps to 1-26
  //  }
  if (c >= 'A' && c <= 'Z' ) {
    c &= 0x1F;   // A-Z maps to 1-26
  }
  else if (c >= 'a' && c <= 'z') {
    c = (c - 'a') + 41;   // A-Z maps to 41-67
  }
  else if (c >= '0' && c <= '9') {
    c = (c - '0') + 31;
  }
  else if (c == ' ') {
    c = 0; // space
  }
  else if (c == '.') {
    c = 27; // full stop
  }
  else if (c == '\'') {
    c = 28; // single quote mark
  }
  else if (c == ':') {
    c = 29; // clock_mode selector arrow
  }
  else if (c == '>') {
    c = 30; // clock_mode selector arrow
  }
  else if (c >= -80 && c <= -67) {
    c *= -1;
  }

  for (char col = 0; col < 5; col++) {
    dots = pgm_read_byte_near(&myfont[c][col]);
    for (char row = 0; row < 7; row++) {
      //check coords are on screen before trying to plot
      //if ((x >= 0) && (x <= 31) && (y >= 0) && (y <= 7)){

      if (dots & (64 >> row)) {   // only 7 rows.
        plot(x + col, y + row, 1);
      } else {
        plot(x + col, y + row, 0);
      }
      //}
    }
  }
}


//small_mode
//show the time in small 3x5 characters with seconds display

void small_mode() {

  char textchar[8]; // the 16 characters on the display
  byte mins = 100; //mins
  byte secs = rtc[0]; //seconds
  byte old_secs = secs; //holds old seconds value - from last time seconds were updated o display - used to check if seconds have changed
  
  cls();

  //run clock main loop as long as run_mode returns true
  while (run_mode()) {

cacah++;

    get_time();

    //if secs changed then update them on the display
    secs = rtc[0];
    if (secs != old_secs) {

      //secs
      char buffer[3];
      itoa(secs, buffer, 10);

      //fix - as otherwise if num has leading zero, e.g. "03" secs, itoa coverts this to chars with space "3 ".
      if (secs < 10) {
        buffer[1] = buffer[0];
        buffer[0] = '0';
      }

      puttinychar( 20, 1, ':'); //seconds colon
      puttinychar( 24, 1, buffer[0]); //seconds
      puttinychar( 28, 1, buffer[1]); //seconds
      old_secs = secs;
    }

    //if minute changes change time
    if (mins != rtc[1]) {

      //reset these for comparison next time
      mins = rtc[1];
      byte hours = rtc[2];
      if (hours > 12) {
        hours = hours - ampm * 12;
      }
      if (hours < 1) {
        hours = hours + ampm * 12;
      }


      //byte dow  = rtc[3]; // the DS1307 outputs 0 - 6 where 0 = Sunday0 - 6 where 0 = Sunday.
      //byte date = rtc[4];

      //set characters
      char buffer[3];
      itoa(hours, buffer, 10);

      //fix - as otherwise if num has leading zero, e.g. "03" hours, itoa coverts this to chars with space "3 ".
      if (hours < 10) {
        buffer[1] = buffer[0];
        //if we are in 12 hour mode blank the leading zero.
        if (ampm) {
          buffer[0] = ' ';
        }
        else {
          buffer[0] = '0';
        }
      }
      //set hours chars
      textchar[0] = buffer[0];
      textchar[1] = buffer[1];
      textchar[2] = ':';

      itoa (mins, buffer, 10);
      if (mins < 10) {
        buffer[1] = buffer[0];
        buffer[0] = '0';
      }
      //set mins characters
      textchar[3] = buffer[0];
      textchar[4] = buffer[1];

      //do seconds
      textchar[5] = ':';
      buffer[3];
      secs = rtc[0];
      itoa(secs, buffer, 10);

      //fix - as otherwise if num has leading zero, e.g. "03" secs, itoa coverts this to chars with space "3 ".
      if (secs < 10) {
        buffer[1] = buffer[0];
        buffer[0] = '0';
      }
      //set seconds
      textchar[6] = buffer[0];
      textchar[7] = buffer[1];

      byte x = 0;
      byte y = 0;

      //print each char
      for (byte x = 0; x < 6 ; x++) {
        puttinychar( x * 4, 1, textchar[x]);
      }
    }
    delay(50);

if(cacah > 200){
  cacah = 0;
  return;
  }

    
  }
  fade_down();
}


// basic_mode()
// show the time in 5x7 characters
void basic_mode()
{
  cls();

  char buffer[3];   //for int to char conversion to turn rtc values into chars we can print on screen
  byte offset = 0;  //used to offset the x postition of the digits and centre the display when we are in 12 hour mode and the clock shows only 3 digits. e.g. 3:21
  byte x, y;        //used to draw a clear box over the left hand "1" of the display when we roll from 12:59 -> 1:00am in 12 hour mode.

  //do 12/24 hour conversion if ampm set to 1
  byte hours = rtc[2];

  if (hours > 12) {
    hours = hours - ampm * 12;
  }
  if (hours < 1) {
    hours = hours + ampm * 12;
  }

  //do offset conversion
  if (ampm && hours < 10) {
    offset = 2;
  }
  
  //set the next minute we show the date at
  //set_next_date();
  
  // initially set mins to value 100 - so it wll never equal rtc[1] on the first loop of the clock, meaning we draw the clock display when we enter the function
  byte secs = 100;
  byte mins = 100;
  int count = 0;
  
  //run clock main loop as long as run_mode returns true
  while (run_mode()) {

    //get the time from the clock chip
    get_time();
    
    //check whether it's time to automatically display the date
    //check_show_date();

    //draw the flashing : as on if the secs have changed.
    if (secs != rtc[0]) {

      //update secs with new value
      secs = rtc[0];

      //draw :
      plot (15 - offset, 2, 1); //top point
      plot (15 - offset, 5, 1); //bottom point
      count = 400;
    }

    //if count has run out, turn off the :
    if (count == 0) {
      plot (15 - offset, 2, 0); //top point
      plot (15 - offset, 5, 0); //bottom point
    }
    else {
      count--;
    }

    //re draw the display if button pressed or if mins != rtc[1] i.e. if the time has changed from what we had stored in mins, (also trigggered on first entering function when mins is 100)
    if (mins != rtc[1]) {

      //update mins and hours with the new values
      mins = rtc[1];
      hours = rtc[2];

      //adjust hours of ampm set to 12 hour mode
      if (hours > 12) {
        hours = hours - ampm * 12;
      }
      if (hours < 1) {
        hours = hours + ampm * 12;
      }

      itoa(hours, buffer, 10);

      //if hours < 10 the num e.g. "3" hours, itoa coverts this to chars with space "3 " which we dont want
      if (hours < 10) {
        buffer[1] = buffer[0];
        buffer[0] = '0';
      }

      //print hours
      //if we in 12 hour mode and hours < 10, then don't print the leading zero, and set the offset so we centre the display with 3 digits.
      if (ampm && hours < 10) {
        offset = 2;

        //if the time is 1:00am clear the entire display as the offset changes at this time and we need to blank out the old 12:59
        if ((hours == 1 && mins == 0) ) {
          cls();
        }
      }
      else {
        //else no offset and print hours tens digit
        offset = 0;

        //if the time is 10:00am clear the entire display as the offset changes at this time and we need to blank out the old 9:59
        if (hours == 10 && mins == 0) {
          cls();
        }


        putnormalchar(1,  0, buffer[0]);
      }
      //print hours ones digit
      putnormalchar(7 - offset, 0, buffer[1]);


      //print mins
      //add leading zero if mins < 10
      itoa (mins, buffer, 10);
      if (mins < 10) {
        buffer[1] = buffer[0];
        buffer[0] = '0';
      }
      //print mins tens and ones digits
      putnormalchar(19 - offset, 0, buffer[0]);
      putnormalchar(25 - offset, 0, buffer[1]);
    }
  }
  fade_down();
}


//like basic_mode but with slide effect
void slide() {

  byte digits_old[4] = {99, 99, 99, 99}; //old values  we store time in. Set to somthing that will never match the time initially so all digits get drawn wnen the mode starts
  byte digits_new[4]; //new digits time will slide to reveal
  byte digits_x_pos[4] = {25, 19, 7, 1}; //x pos for which to draw each digit at

  char old_char[2]; //used when we use itoa to transpose the current digit (type byte) into a char to pass to the animation function
  char new_char[2]; //used when we use itoa to transpose the new digit (type byte) into a char to pass to the animation function

  //old_chars - stores the 5 day and date suffix chars on the display. e.g. "mon" and "st". We feed these into the slide animation as the current char when these chars are updated.
  //We sent them as A initially, which are used when the clocl enters the mode and no last chars are stored.
  //char old_chars[6] = "AAAAA";

  //plot the clock colon on the display
  cls();
  putnormalchar( 13, 0, ':');

  byte old_secs = rtc[0]; //store seconds in old_secs. We compare secs and old secs. WHen they are different we redraw the display

  //run clock main loop as long as run_mode returns true
  while (run_mode()) {

    get_time();

    //if secs have changed then update the display
    if (rtc[0] != old_secs) {
      old_secs = rtc[0];

      //do 12/24 hour conversion if ampm set to 1
      byte hours = rtc[2];
      if (hours > 12) {
        hours = hours - ampm * 12;
      }
      if (hours < 1) {
        hours = hours + ampm * 12;
      }

      //split all date and time into individual digits - stick in digits_new array

      //rtc[0] = secs                        //array pos and digit stored
      //digits_new[0] = (rtc[0]%10);           //0 - secs ones
      //digits_new[1] = ((rtc[0]/10)%10);      //1 - secs tens
      //rtc[1] = mins
      digits_new[0] = (rtc[1] % 10);         //2 - mins ones
      digits_new[1] = ((rtc[1] / 10) % 10);  //3 - mins tens
      //rtc[2] = hours
      digits_new[2] = (hours % 10);         //4 - hour ones
      digits_new[3] = ((hours / 10) % 10);  //5 - hour tens
      //rtc[4] = date
      //digits_new[6] = (rtc[4]%10);           //6 - date ones
      //digits_new[7] = ((rtc[4]/10)%10);      //7 - date tens

      //draw initial screen of all chars. After this we just draw the changes.

      //compare digits 0 to 3 (mins and hours)
      for (byte i = 0; i <= 3; i++) {
        //see if digit has changed...
        if (digits_old[i] != digits_new[i]) {

          //run 9 step animation sequence for each in turn
          for (byte seq = 0; seq <= 8 ; seq++) {

            //convert digit to string
            itoa(digits_old[i], old_char, 10);
            itoa(digits_new[i], new_char, 10);

            //if set to 12 hour mode and we're on digit 2 (hours tens mode) then check to see if this is a zero. If it is, blank it instead so we get 2.00pm not 02.00pm
            if (ampm && i == 3) {
              if (digits_new[3] == 0) {
                new_char[0] = ' ';
              }
              if (digits_old[3] == 0) {
                old_char[0] = ' ';
              }
            }
            //draw the animation frame for each digit
            slideanim(digits_x_pos[i], 0, seq, old_char[0], new_char[0]);
            delay(SLIDE_DELAY);
          }
        }
      }

      //save digita array tol old for comparison next loop
      for (byte i = 0; i <= 3; i++) {
        digits_old[i] =  digits_new[i];
      }
    }//secs/oldsecs
  }//while loop
  fade_down();
}


//called by slide
//this draws the animation of one char sliding on and the other sliding off. There are 8 steps in the animation, we call the function to draw one of the steps from 0-7
//inputs are are char x and y, animation frame sequence (0-7) and the current and new chars being drawn.
void slideanim(byte x, byte y, byte sequence, char current_c, char new_c) {

  //  To slide one char off and another on we need 9 steps or frames in sequence...

  //  seq# 0123456 <-rows of the display
  //   |   |||||||
  //  seq0 0123456  START - all rows of the display 0-6 show the current characters rows 0-6
  //  seq1  012345  current char moves down one row on the display. We only see it's rows 0-5. There are at display positions 1-6 There is a blank row inserted at the top
  //  seq2 6 01234  current char moves down 2 rows. we now only see rows 0-4 at display rows 2-6 on the display. Row 1 of the display is blank. Row 0 shows row 6 of the new char
  //  seq3 56 0123
  //  seq4 456 012  half old / half new char
  //  seq5 3456 01
  //  seq6 23456 0
  //  seq7 123456
  //  seq8 0123456  END - all rows show the new char

  //from above we can see...
  //currentchar runs 0-6 then 0-5 then 0-4 all the way to 0. starting Y position increases by 1 row each time.
  //new char runs 6 then 5-6 then 4-6 then 3-6. starting Y position increases by 1 row each time.

  //if sequence number is below 7, we need to draw the current char
  if (sequence < 7) {
    byte dots;
    // if (current_c >= 'A' &&  || (current_c >= 'a' && current_c <= 'z') ) {
    //   current_c &= 0x1F;   // A-Z maps to 1-26
    // }
    if (current_c >= 'A' && current_c <= 'Z' ) {
      current_c &= 0x1F;   // A-Z maps to 1-26
    }
    else if (current_c >= 'a' && current_c <= 'z') {
      current_c = (current_c - 'a') + 41;   // A-Z maps to 41-67
    }
    else if (current_c >= '0' && current_c <= '9') {
      current_c = (current_c - '0') + 31;
    }
    else if (current_c == ' ') {
      current_c = 0; // space
    }
    else if (current_c == '.') {
      current_c = 27; // full stop
    }
    else if (current_c == '\'') {
      current_c = 28; // single quote mark
    }
    else if (current_c == ':') {
      current_c = 29; //colon
    }
    else if (current_c == '>') {
      current_c = 30; // clock_mode selector arrow
    }

    byte curr_char_row_max = 7 - sequence; //the maximum number of rows to draw is 6 - sequence number
    byte start_y = sequence; //y position to start at - is same as sequence number. We inc this each loop

    //plot each row up to row maximum (calculated from sequence number)
    for (byte curr_char_row = 0; curr_char_row <= curr_char_row_max; curr_char_row++) {
      for (byte col = 0; col < 5; col++) {
        dots = pgm_read_byte_near(&myfont[current_c][col]);
        if (dots & (64 >> curr_char_row))
          plot(x + col, y + start_y, 1); //plot led on
        else
          plot(x + col, y + start_y, 0); //else plot led off
      }
      start_y++;//add one to y so we draw next row one down
    }
  }

  //draw a blank line between the characters if sequence is between 1 and 7. If we don't do this we get the remnants of the current chars last position left on the display
  if (sequence >= 1 && sequence <= 8) {
    for (byte col = 0; col < 5; col++) {
      plot(x + col, y + (sequence - 1), 0); //the y position to draw the line is equivalent to the sequence number - 1
    }
  }



  //if sequence is above 2, we also need to start drawing the new char
  if (sequence >= 2) {

    //work out char
    byte dots;
    //if (new_c >= 'A' && new_c <= 'Z' || (new_c >= 'a' && new_c <= 'z') ) {
    //  new_c &= 0x1F;   // A-Z maps to 1-26
    //}
    if (new_c >= 'A' && new_c <= 'Z' ) {
      new_c &= 0x1F;   // A-Z maps to 1-26
    }
    else if (new_c >= 'a' && new_c <= 'z') {
      new_c = (new_c - 'a') + 41;   // A-Z maps to 41-67
    }
    else if (new_c >= '0' && new_c <= '9') {
      new_c = (new_c - '0') + 31;
    }
    else if (new_c == ' ') {
      new_c = 0; // space
    }
    else if (new_c == '.') {
      new_c = 27; // full stop
    }
    else if (new_c == '\'') {
      new_c = 28; // single quote mark
    }
    else if (new_c == ':') {
      new_c = 29; // clock_mode selector arrow
    }
    else if (new_c == '>') {
      new_c = 30; // clock_mode selector arrow
    }

    byte newcharrowmin = 6 - (sequence - 2); //minimumm row num to draw for new char - this generates an output of 6 to 0 when fed sequence numbers 2-8. This is the minimum row to draw for the new char
    byte start_y = 0; //y position to start at - is same as sequence number. we inc it each row

    //plot each row up from row minimum (calculated by sequence number) up to 6
    for (byte newcharrow = newcharrowmin; newcharrow <= 6; newcharrow++) {
      for (byte col = 0; col < 5; col++) {
        dots = pgm_read_byte_near(&myfont[new_c][col]);
        if (dots & (64 >> newcharrow))
          plot(x + col, y + start_y, 1); //plot led on
        else
          plot(x + col, y + start_y, 0); //else plot led off
      }
      start_y++;//add one to y so we draw next row one down
    }
  }
}


/// scroll message - not used at present - too slow.
void scroll() {

  char message[] = {"Hello There "};

  cls();
  byte p = 6;      //current pos in string
  byte chara[] = {0, 1, 2, 3, 4, 5}; //chars from string
  int x[] = {0, 6, 12, 18, 24, 30}; //xpos for each char
  byte y = 0;                   //y pos

  // clear_buffer();

  while (message[p] != '\0') {

    //draw all 6 chars
    for (byte c = 0; c < 6; c++) {

      putnormalchar(x[c],y,message[ chara[c] ]);
      

      //draw a line of pixels turned off after each char,otherwise the gaps between the chars have pixels left in them from the previous char
      for (byte yy = 0 ; yy < 8; yy ++) {
        plot(x[c] + 5, yy, 0);
      }

      //take one off each chars position
      x[c] = x[c] - 1;
    }

    //reset a char if it's gone off screen
    for (byte i = 0; i <= 5; i++) {
      if (x[i] < -5 ) {
        x[i] = 31;
        chara[i] = p;
        p++;
      }
    }
  }
}

//display_date - print the day of week, date and month with a flashing cursor effect
void display_date()
{

  cls();
  //read the date from the DS1307

  byte dow = rtc[3]; // day of week 0 = Sunday
  byte date = rtc[4];
  byte month = rtc[5] - 1;

  //array of month names to print on the display. Some are shortened as we only have 8 characters across to play with
  char monthnames[12][9] = {
    "January", "February", "March", "April", "May", "June", "July", "August", "Sept", "October", "November", "December"
  };

  //print the day name
  
  //get length of text in pixels, that way we can centre it on the display by divindin the remaining pixels b2 and using that as an offset
  byte len = 0;
  while(daysfull[dow][len]) { 
    len++; 
  }; 
  byte offset = (31 - ((len-1)*4)) / 2; //our offset to centre up the text
      
  //print the name     
  int i = 0;
  while(daysfull[dow][i])
  {
    puttinychar((i*4) + offset , 1, daysfull[dow][i]); 
    i++;
  }
  delay(1000);
  fade_down();
  cls();
  
  // print date numerals
  char buffer[3];
  itoa(date,buffer,10);
  offset = 10; //offset to centre text if 3 chars - e.g. 3rd
  
  // first work out date 2 letter suffix - eg st, nd, rd, th etc
  // char suffix[4][3]={"st", "nd", "rd", "th"  }; is defined at top of code
  byte s = 3; 
  if(date == 1 || date == 21 || date == 31) {
    s = 0;
  } 
  else if (date == 2 || date == 22) {
    s = 1;
  } 
  else if (date == 3 || date == 23) {
    s = 2;
  } 

  //print the 1st date number
  puttinychar(0+offset, 1, buffer[0]);

  //if date is under 10 - then we only have 1 digit so set positions of sufix etc one character nearer
  byte suffixposx = 4;

  //if date over 9 then print second number and set xpos of suffix to be 1 char further away
  if (date > 9){
    suffixposx = 8;

    puttinychar(4+offset, 1, buffer[1]);
    offset = 8; //offset to centre text if 4 chars
  }

byte spatiu = 2;
  //print the 2 suffix characters
  puttinychar(suffixposx+offset+spatiu, 1, suffix[s][0]); 
  puttinychar(suffixposx+4+offset+spatiu, 1, suffix[s][1]); 

  delay(1000);
  fade_down();
  
  //print the month name 
  
  //get length of text in pixels, that way we can centre it on the display by divindin the remaining pixels b2 and using that as an offset
  len = 0;
  while(monthnames[month][len]) { 
    len++; 
  }; 
  offset = (31 - ((len-1)*4)) / 2; //our offset to centre up the text
  i = 0;
  while(monthnames[month][i])
  {  
    puttinychar((i*4) +offset, 1, monthnames[month][i]); 
    i++; 
  }
  
  delay(1000);
  fade_down();
}


//run clock main loop as long as run_mode returns true
byte run_mode() {

  //if random mode is on... check the hour when we change mode.
  if (random_mode) {
    //if hour value in change mode time = hours. then reurn false = i.e. exit mode.
    if (change_mode_time == rtc[2]) {
      //set the next random clock mode and time to change it
      set_next_random();
      //exit the current mode.
      return 0;
    }
  }
  //else return 1 - keep running in this mode
  return 1;
}


//set the next hour the clock will change mode when random mode is on
void set_next_random() {

  //set the next hour the clock mode will change - current time plus 1 - 4 hours
  get_time();
  change_mode_time = rtc[2] + random (1, 5);

  //if change_mode_time now happens to be over 23, then set it to between 1 and 3am
  if (change_mode_time > 23) {
    change_mode_time = random (1, 4);
  }

  //set the new clock mode
  clock_mode = random(0, NUM_DISPLAY_MODES + 1);  //pick new random clock mode
}


//dislpay menu to change the clock settings
void setup_menu() {

  char* set_modes[] = {
     "Rndom", "24 Hr","Set", "Brght", "Exit"}; 
  if (ampm == 0) { 
    set_modes[1] = ("12 Hr"); 
  }

  byte setting_mode = 0;
  byte next_setting_mode;
  byte firstrun = 1;

  //loop waiting for button (timeout after 35 loops to return to mode X)
  for(int count=0; count < 35 ; count++) {

/*
    //if user hits button, change the clock_mode
    if(buttonA.uniquePress() || firstrun == 1){

      count = 0;
      cls();

      if (firstrun == 0) { 
        setting_mode++; 
      } 
      if (setting_mode > NUM_SETTINGS_MODES) { 
        setting_mode = 0; 
      }

      //print arrown and current clock_mode name on line one and print next clock_mode name on line two
      char str_top[9];
    
      strcpy (str_top, set_modes[setting_mode]);

      next_setting_mode = setting_mode + 1;
      if (next_setting_mode > NUM_SETTINGS_MODES) { 
        next_setting_mode = 0; 
      }
      
      byte i = 0;
      while(str_top[i]) {
        putnormalchar(i*6, 0, str_top[i]); 
        i++;
      }

      firstrun = 0;
    }
*/
    
    delay(50); 
  }
  
  //pick the mode 
  switch(setting_mode){
    case 0: 
      set_random(); 
      break;
    case 1: 
       set_ampm(); 
      break;
    case 2: 
      set_time(); 
      break;
    case 3: 
       set_intensity(); 
      break;
    case 4: 
      //exit menu
      break;
  }
    
  //change the clock from mode 6 (settings) back to the one it was in before 
  clock_mode=old_mode;
}


//toggle random mode - pick a different clock mode every few hours
void set_random(){
  cls();

  char text_a[9] = "Off";
  char text_b[9] = "On";
  byte i = 0;

  //if random mode is on, turn it off
  if (random_mode){

    //turn random mode off
    random_mode = 0;

    //print a message on the display
    while(text_a[i]) {
      putnormalchar((i*6), 0, text_a[i]);
      i++;
    }
  } else {
    //turn randome mode on. 
    random_mode = 1;
    
    //set hour mode will change
    set_next_random();
  
    //print a message on the display
    while(text_b[i]) {
      putnormalchar((i*6), 0, text_b[i]);
      i++;
    }  
  } 
  delay(1500); //leave the message up for a second or so
}



//set 12 or 24 hour clock
void set_ampm() {

  // AM/PM or 24 hour clock mode - flip the bit (makes 0 into 1, or 1 into 0 for ampm mode)
  ampm = (ampm ^ 1);
  cls();
}


//change screen intensityintensity
void set_intensity() {

  cls();
  
  byte i = 0;
  char text[7] = "Bright";
  while(text[i]) {
    puttinychar((i*4)+4, 0, text[i]);
    i++;
  }

  //wait for button input
  /*
  while (!buttonA.uniquePress()) {

    levelbar (0,6,(intensity*2)+2,2);    //display the intensity level as a bar
    while (buttonB.isPressed()) {

      if(intensity == 15) { 
        intensity = 0;
        cls (); 
      } 
      else {
        intensity++; 
      }
      //print the new value 
      i = 0;
      while(text[i]) {
        puttinychar((i*4)+4, 0, text[i]);
        i++;
      }
      
      //display the intensity level as a bar
      levelbar (0,6,(intensity*2)+2,2);    
      
      //change the brightness setting on the displays
      for (byte address = 0; address < 4; address++) {
        lc.setIntensity(address, intensity);
      }
      delay(150);
    }
  }
*/
  
}


// display a horizontal bar on the screen at offset xposr by ypos with height and width of xbar, ybar
void levelbar (byte xpos, byte ypos, byte xbar, byte ybar) {
  for (byte x = 0; x < xbar; x++) {
    for (byte y = 0; y <= ybar; y++) {
      plot(x+xpos, y+ypos, 1);
    }
  }
}





//used to set min, hr, date, month, year values. pass 
//message = which 'set' message to print, 
//current value = current value of property we are setting
//reset_value = what to reset value to if to rolls over. E.g. mins roll from 60 to 0, months from 12 to 1
//rollover limit = when value rolls over
int set_value(byte message, int current_value, int reset_value, int rollover_limit){

  cls();
  char messages[6][17]   = {
    "Set Mins", "Set Hour", "Set Day", "Set Mnth", "Set Year"};

  //Print "set xyz" top line
  byte i = 0;
  while(messages[message][i])
  {
    puttinychar(i*4 , 1, messages[message][i]); 
    i++;
  }

  delay(2000);
  cls();

  //print digits bottom line
  char buffer[5] = "    ";
  itoa(current_value,buffer,10);
  puttinychar(0 , 1, buffer[0]); 
  puttinychar(4 , 1, buffer[1]); 
  puttinychar(8 , 1, buffer[2]); 
  puttinychar(12, 1, buffer[3]); 

  delay(300);
  //wait for button input
  /*
  while (!buttonA.uniquePress()) {

    while (buttonB.isPressed()){

      if(current_value < rollover_limit) { 
        current_value++;
      } 
      else {
        current_value = reset_value;
      }
      //print the new value
      itoa(current_value, buffer ,10);
      puttinychar(0 , 1, buffer[0]); 
      puttinychar(4 , 1, buffer[1]); 
      puttinychar(8 , 1, buffer[2]); 
      puttinychar(12, 1, buffer[3]);    
      delay(150);
    }
  }
  */
  return current_value;
}





void get_time()
{
  //get time
  DateTime now = ds1307.now();
  //save time to array
  rtc[6] = now.year();
  rtc[5] = now.month();
  rtc[4] = now.day();
  rtc[3] = now.dayOfTheWeek(); //returns 0-6 where 0 = Sunday
  rtc[2] = now.hour();
  rtc[1] = now.minute();
  rtc[0] = now.second();

  //flash arduino led on pin 13 every second
  //if ( (rtc[0] % 2) == 0) {
  //  digitalWrite(13, HIGH);
  //}
  //else {
  //  digitalWrite(13, LOW);
  //}

  //print the time to the serial port - useful for debuging RTC issues
  /*
  Serial.print(rtc[2]);
  Serial.print(":");
  Serial.print(rtc[1]);
  Serial.print(":");
  Serial.println(rtc[0]);
  */
}



const unsigned char font5x7 [] PROGMEM = {      //Numeric Font Matrix (Arranged as 7x font data + 1x kerning data)
    B00000000,  //Space (Char 0x20)
    B00000000,
    B00000000,
    B00000000,
    B00000000,
    B00000000,
    B00000000,
    3,//cambias el tamaño del espacio entre letras

    B01000000,  //!
    B01000000,
    B01000000,
    B01000000,
    B01000000,
    B00000000,
    B01000000,
    2,

    B10100000,  //"
    B10100000,
    B10100000,
    B00000000,
    B00000000,
    B00000000,
    B00000000,
    4,

    B01010000,  //#
    B01010000,
    B11111000,
    B01010000,
    B11111000,
    B01010000,
    B01010000,
    6,

    B00100000,  //$
    B01111000,
    B10100000,
    B01110000,
    B00101000,
    B11110000,
    B00100000,
    6,

    B11000000,  //%
    B11001000,
    B00010000,
    B00100000,
    B01000000,
    B10011000,
    B00011000,
    6,

    B01100000,  //&
    B10010000,
    B10100000,
    B01000000,
    B10101000,
    B10010000,
    B01101000,
    6,

    B11000000,  //'
    B01000000,
    B10000000,
    B00000000,
    B00000000,
    B00000000,
    B00000000,
    3,

    B00100000,  //(
    B01000000,
    B10000000,
    B10000000,
    B10000000,
    B01000000,
    B00100000,
    4,

    B10000000,  //)
    B01000000,
    B00100000,
    B00100000,
    B00100000,
    B01000000,
    B10000000,
    4,

    B00000000,  //*
    B00100000,
    B10101000,
    B01110000,
    B10101000,
    B00100000,
    B00000000,
    6,

    B00000000,  //+
    B00100000,
    B00100000,
    B11111000,
    B00100000,
    B00100000,
    B00000000,
    6,

    B00000000,  //,
    B00000000,
    B00000000,
    B00000000,
    B11000000,
    B01000000,
    B10000000,
    3,

    B00000000,  //-
    B00000000,
    B11111000,
    B00000000,
    B00000000,
    B00000000,
    B00000000,
    6,

    B00000000,  //.
    B00000000,
    B00000000,
    B00000000,
    B00000000,
    B11000000,
    B11000000,
    3,

    B00000000,  ///
    B00001000,
    B00010000,
    B00100000,
    B01000000,
    B10000000,
    B00000000,
    6,

    B01110000,  //0
    B10001000,
    B10011000,
    B10101000,
    B11001000,
    B10001000,
    B01110000,
    6,

    B01000000,  //1
    B11000000,
    B01000000,
    B01000000,
    B01000000,
    B01000000,
    B11100000,
    4,

    B01110000,  //2
    B10001000,
    B00001000,
    B00010000,
    B00100000,
    B01000000,
    B11111000,
    6,

    B11111000,  //3
    B00010000,
    B00100000,
    B00010000,
    B00001000,
    B10001000,
    B01110000,
    6,

    B00010000,  //4
    B00110000,
    B01010000,
    B10010000,
    B11111000,
    B00010000,
    B00010000,
    6,

    B11111000,  //5
    B10000000,
    B11110000,
    B00001000,

    B00001000,
    B10001000,
    B01110000,
    6,

    B00110000,  //6
    B01000000,
    B10000000,
    B11110000,
    B10001000,
    B10001000,
    B01110000,
    6,

    B11111000,  //7
    B10001000,
    B00001000,
    B00010000,
    B00100000,
    B00100000,
    B00100000,
    6,

    B01110000,  //8
    B10001000,
    B10001000,
    B01110000,
    B10001000,
    B10001000,
    B01110000,
    6,

    B01110000,  //9
    B10001000,
    B10001000,
    B01111000,
    B00001000,
    B00010000,
    B01100000,
    6,

    B00000000,  //:
    B11000000,
    B11000000,
    B00000000,
    B11000000,
    B11000000,
    B00000000,
    3,

    B00000000,  //;
    B11000000,
    B11000000,
    B00000000,
    B11000000,
    B01000000,
    B10000000,
    3,

    B00010000,  //<
    B00100000,
    B01000000,
    B10000000,
    B01000000,
    B00100000,
    B00010000,
    5,

    B00000000,  //=
    B00000000,
    B11111000,
    B00000000,
    B11111000,
    B00000000,
    B00000000,
    6,

    B10000000,  //>
    B01000000,
    B00100000,
    B00010000,
    B00100000,
    B01000000,
    B10000000,
    5,

    B01110000,  //?
    B10001000,
    B00001000,
    B00010000,
    B00100000,
    B00000000,
    B00100000,
    6,

    B01110000,  //@
    B10001000,
    B00001000,
    B01101000,
    B10101000,
    B10101000,
    B01110000,
    6,

    B01110000,  //A
    B10001000,
    B10001000,
    B10001000,
    B11111000,
    B10001000,
    B10001000,
    6,

    B11110000,  //B
    B10001000,
    B10001000,
    B11110000,
    B10001000,
    B10001000,
    B11110000,
    6,

    B01110000,  //C
    B10001000,
    B10000000,
    B10000000,
    B10000000,
    B10001000,
    B01110000,
    6,

    B11100000,  //D
    B10010000,
    B10001000,
    B10001000,
    B10001000,
    B10010000,
    B11100000,
    6,

    B11111000,  //E
    B10000000,
    B10000000,
    B11110000,
    B10000000,
    B10000000,
    B11111000,
    6,

    B11111000,  //F
    B10000000,
    B10000000,
    B11110000,
    B10000000,
    B10000000,
    B10000000,
    6,

    B01110000,  //G
    B10001000,
    B10000000,
    B10111000,
    B10001000,
    B10001000,
    B01111000,
    6,

    B10001000,  //H
    B10001000,
    B10001000,
    B11111000,
    B10001000,
    B10001000,
    B10001000,
    6,

    B11100000,  //I
    B01000000,
    B01000000,
    B01000000,
    B01000000,
    B01000000,
    B11100000,
    4,

    B00111000,  //J
    B00010000,
    B00010000,
    B00010000,
    B00010000,
    B10010000,
    B01100000,
    6,

    B10001000,  //K
    B10010000,
    B10100000,
    B11000000,
    B10100000,
    B10010000,
    B10001000,
    6,

    B10000000,  //L
    B10000000,
    B10000000,
    B10000000,
    B10000000,
    B10000000,
    B11111000,
    6,

    B10001000,  //M
    B11011000,
    B10101000,
    B10101000,
    B10001000,
    B10001000,
    B10001000,
    6,

    B10001000,  //N
    B10001000,
    B11001000,
    B10101000,
    B10011000,
    B10001000,
    B10001000,
    6,

    B01110000,  //O
    B10001000,
    B10001000,
    B10001000,
    B10001000,
    B10001000,
    B01110000,
    6,

    B11110000,  //P
    B10001000,
    B10001000,
    B11110000,
    B10000000,
    B10000000,
    B10000000,
    6,

    B01110000,  //Q
    B10001000,
    B10001000,
    B10001000,
    B10101000,
    B10010000,
    B01101000,
    6,

    B11110000,  //R
    B10001000,
    B10001000,
    B11110000,
    B10100000,
    B10010000,
    B10001000,
    6,

    B01111000,  //S
    B10000000,
    B10000000,
    B01110000,
    B00001000,
    B00001000,
    B11110000,
    6,

    B11111000,  //T
    B00100000,
    B00100000,
    B00100000,
    B00100000,
    B00100000,
    B00100000,
    6,

    B10001000,  //U
    B10001000,
    B10001000,
    B10001000,
    B10001000,
    B10001000,

    B01110000,
    6,

    B10001000,  //V
    B10001000,
    B10001000,
    B10001000,
    B10001000,
    B01010000,
    B00100000,
    6,

    B10001000,  //W
    B10001000,
    B10001000,
    B10101000,
    B10101000,
    B10101000,
    B01010000,
    6,

    B10001000,  //X
    B10001000,
    B01010000,
    B00100000,
    B01010000,
    B10001000,
    B10001000,
    6,

    B10001000,  //Y
    B10001000,
    B10001000,
    B01010000,
    B00100000,
    B00100000,
    B00100000,
    6,

    B11111000,  //Z
    B00001000,
    B00010000,
    B00100000,
    B01000000,
    B10000000,
    B11111000,
    6,

    B11100000,  //[
    B10000000,
    B10000000,
    B10000000,
    B10000000,
    B10000000,
    B11100000,
    4,

    B00000000,  //(Backward Slash)
    B10000000,
    B01000000,
    B00100000,
    B00010000,
    B00001000,
    B00000000,
    6,

    B11100000,  //]
    B00100000,
    B00100000,
    B00100000,
    B00100000,
    B00100000,
    B11100000,
    4,

    B00100000,  //^
    B01010000,
    B10001000,
    B00000000,
    B00000000,
    B00000000,
    B00000000,
    6,

    B00000000,  //_
    B00000000,
    B00000000,
    B00000000,
    B00000000,
    B00000000,
    B11111000,
    6,

    B10000000,  //`
    B01000000,
    B00100000,
    B00000000,
    B00000000,
    B00000000,
    B00000000,
    4,

    B00000000,  //a
    B00000000,
    B01110000,
    B00001000,
    B01111000,
    B10001000,
    B01111000,
    6,

    B10000000,  //b
    B10000000,
    B10110000,
    B11001000,
    B10001000,
    B10001000,
    B11110000,
    6,

    B00000000,  //c
    B00000000,
    B01110000,
    B10001000,
    B10000000,
    B10001000,
    B01110000,
    6,

    B00001000,  //d
    B00001000,
    B01101000,
    B10011000,
    B10001000,
    B10001000,
    B01111000,
    6,

    B00000000,  //e
    B00000000,
    B01110000,
    B10001000,
    B11111000,
    B10000000,
    B01110000,
    6,

    B00110000,  //f
    B01001000,
    B01000000,
    B11100000,
    B01000000,
    B01000000,
    B01000000,
    6,

    B00000000,  //g
    B01111000,
    B10001000,
    B10001000,
    B01111000,
    B00001000,
    B01110000,
    6,

    B10000000,  //h
    B10000000,
    B10110000,
    B11001000,
    B10001000,
    B10001000,
    B10001000,
    6,

    B01000000,  //i
    B00000000,
    B11000000,
    B01000000,
    B01000000,
    B01000000,
    B11100000,
    4,

    B00010000,  //j
    B00000000,
    B00110000,
    B00010000,
    B00010000,
    B10010000,
    B01100000,
    5,

    B10000000,  //k
    B10000000,
    B10010000,
    B10100000,
    B11000000,
    B10100000,
    B10010000,
    5,

    B11000000,  //l
    B01000000,
    B01000000,
    B01000000,
    B01000000,
    B01000000,
    B11100000,
    4,

    B00000000,  //m
    B00000000,
    B11010000,
    B10101000,
    B10101000,
    B10001000,
    B10001000,
    6,

    B00000000,  //n
    B00000000,
    B10110000,
    B11001000,
    B10001000,
    B10001000,
    B10001000,
    6,

    B00000000,  //o
    B00000000,
    B01110000,
    B10001000,
    B10001000,
    B10001000,
    B01110000,
    6,

    B00000000,  //p
    B00000000,
    B11110000,
    B10001000,
    B11110000,
    B10000000,
    B10000000,
    6,

    B00000000,  //q
    B00000000,
    B01101000,
    B10011000,
    B01111000,
    B00001000,
    B00001000,
    6,

    B00000000,  //r
    B00000000,
    B10110000,
    B11001000,
    B10000000,
    B10000000,
    B10000000,
    6,

    B00000000,  //s
    B00000000,
    B01110000,
    B10000000,
    B01110000,
    B00001000,
    B11110000,
    6,

    B01000000,  //t
    B01000000,
    B11100000,
    B01000000,
    B01000000,
    B01001000,
    B00110000,
    6,

    B00000000,  //u
    B00000000,
    B10001000,
    B10001000,
    B10001000,
    B10011000,
    B01101000,
    6,

    B00000000,  //v
    B00000000,
    B10001000,
    B10001000,
    B10001000,
    B01010000,
    B00100000,
    6,

    B00000000,  //w
    B00000000,
    B10001000,
    B10101000,
    B10101000,
    B10101000,
    B01010000,
    6,

    B00000000,  //x
    B00000000,
    B10001000,
    B01010000,
    B00100000,
    B01010000,
    B10001000,
    6,

    B00000000,  //y
    B00000000,
    B10001000,
    B10001000,
    B01111000,
    B00001000,
    B01110000,
    6,

    B00000000,  //z
    B00000000,
    B11111000,
    B00010000,
    B00100000,
    B01000000,
    B11111000,
    6,

    B00100000,  //{
    B01000000,
    B01000000,
    B10000000,
    B01000000,
    B01000000,
    B00100000,
    4,

    B10000000,  //|
    B10000000,
    B10000000,
    B10000000,
    B10000000,
    B10000000,
    B10000000,
    2,

    B10000000,  //}
    B01000000,
    B01000000,
    B00100000,
    B01000000,
    B01000000,
    B10000000,
    4,

    B00000000,  //~
    B00000000,
    B00000000,
    B01101000,
    B10010000,
    B00000000,
    B00000000,
    6,

    B01100000,  // (Char 0x7F)
    B10010000,
    B10010000,
    B01100000,
    B00000000,
    B00000000,
    B00000000,
    5,
    
    B00000000,  // smiley
    B01100000,
    B01100110,
    B00000000,
    B10000001,
    B01100110,
    B00011000,
    5
};

void scrollFont() {
    for (int counter=0x20;counter<0x80;counter++){
        loadBufferLong(counter);
        delay(500);
    }
}

// Scroll Message
void scrollMessage(const unsigned char * messageString) {
    int counter = 0;
    int myChar=0;
    do {
        // read back a char 
        myChar =  pgm_read_byte_near(messageString + counter); 
        if (myChar != 0){
            loadBufferLong(myChar);
        }
        counter++;
    } 
    while (myChar != 0);
}
// Load character into scroll buffer
void loadBufferLong(int ascii){
    if (ascii >= 0x20 && ascii <=0x7f){
        for (int a=0;a<7;a++){                      // Loop 7 times for a 5x7 font
            unsigned long c = pgm_read_byte_near(font5x7 + ((ascii - 0x20) * 8) + a);     // Index into character table to get row data
            unsigned long x = bufferLong [a*2];     // Load current scroll buffer
            x = x | c;                              // OR the new character onto end of current
            bufferLong [a*2] = x;                   // Store in buffer
        }
        byte count = pgm_read_byte_near(font5x7 +((ascii - 0x20) * 8) + 7);     // Index into character table for kerning data
        for (byte x=0; x<count;x++){
            rotateBufferLong();
            printBufferLong();
            delay(scrollDelay);
        }
    }
}
// Rotate the buffer
void rotateBufferLong(){
    for (int a=0;a<7;a++){                      // Loop 7 times for a 5x7 font
        unsigned long x = bufferLong [a*2];     // Get low buffer entry
        byte b = bitRead(x,31);                 // Copy high order bit that gets lost in rotation
        x = x<<1;                               // Rotate left one bit
        bufferLong [a*2] = x;                   // Store new low buffer
        x = bufferLong [a*2+1];                 // Get high buffer entry
        x = x<<1;                               // Rotate left one bit
        bitWrite(x,0,b);                        // Store saved bit
        bufferLong [a*2+1] = x;                 // Store new high buffer
    }
}  
// Display Buffer on LED matrix
void printBufferLong(){
  for (int a=0;a<7;a++){                    // Loop 7 times for a 5x7 font
    unsigned long x = bufferLong [a*2+1];   // Get high buffer entry
    byte y = x;                             // Mask off first character
    lc.setRow(3,a,y);                       // Send row to relevent MAX7219 chip
    x = bufferLong [a*2];                   // Get low buffer entry
    y = (x>>24);                            // Mask off second character
    lc.setRow(2,a,y);                       // Send row to relevent MAX7219 chip
    y = (x>>16);                            // Mask off third character
    lc.setRow(1,a,y);                       // Send row to relevent MAX7219 chip
    y = (x>>8);                             // Mask off forth character
    lc.setRow(0,a,y);                       // Send row to relevent MAX7219 chip
  }
}






e. VIDEO HASILNYA







No comments:

Post a Comment