Pada kesempatan kali ini saya akan menjelaskan mengenai bagaimana cara mengakses motor servo dan sensor suhu LM35 menggunakan bahasa c (CV AVR). alat ini sebenarnya digunakan untuk mengendalikan valve, jika suhu telah melebihi batas yang ditentukan maka servo akan berputar menutup valve, jika kurang dari batas yang ditentukan maka servo akan berputar membuka valve. begitu seterusnya. untuk mengetahui program dan skemanya bisa simak ulasan berikut.
a. Minimum System
b. Motor Servo
c. Sensor Suhu LM35
d. UBEC 3A Voltage Regulator
e. Program Code Vision AVR (CV AVR)
/*****************************************************
This program was produced by the
CodeWizardAVR V2.05.0 Professional
Automatic Program Generator
© Copyright 1998-2010 Pavel Haiduc, HP InfoTech s.r.l.
http://www.hpinfotech.com
Project :
Version :
Date : 8/6/2016
Author : NeVaDa
Company :
Comments: cah lebay mencari puing2 asmara
Chip type : ATmega16
Program type : Application
AVR Core Clock frequency: 11.059200 MHz
Memory model : Small
External RAM size : 0
Data Stack size : 256
*****************************************************/
#include <mega16.h>
#include <stdlib.h>
#include <delay.h>
#include <math.h>
// Standard Input/Output functions
#include <stdio.h>
// Alphanumeric LCD Module functions
#include <alcd.h>
#define ADC_VREF_TYPE 0x40
#define servo1 PORTC.0
// Read the AD conversion result
unsigned int read_adc(unsigned char adc_input)
{
ADMUX=adc_input | (ADC_VREF_TYPE & 0xff);
// Delay needed for the stabilization of the ADC input voltage
delay_us(10);
// Start the AD conversion
ADCSRA|=0x40;
// Wait for the AD conversion to complete
while ((ADCSRA & 0x10)==0);
ADCSRA|=0x10;
return ADCW;
}
// Declare your global variables here
unsigned int dataadc1, y, data1;
float suhu, vin;
char temp[10];
// Timer 0 overflow interrupt service routine
interrupt [TIM0_OVF] void timer0_ovf_isr(void)
{
// Place your code here
y++;
if (y==900){y=0;}
if (y <=data1){ servo1=1;}
else{ servo1=0;}
}
void main(void)
{
// Declare your local variables here
// Input/Output Ports initialization
// Port A initialization
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In
// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T
PORTA=0x00;
DDRA=0x00;
// Port B initialization
// Func7=Out Func6=Out Func5=Out Func4=Out Func3=Out Func2=Out Func1=Out Func0=Out
// State7=0 State6=0 State5=0 State4=0 State3=0 State2=0 State1=0 State0=0
PORTB=0x00;
DDRB=0xFF;
// Port C initialization
// Func7=Out Func6=Out Func5=Out Func4=Out Func3=Out Func2=Out Func1=Out Func0=Out
// State7=0 State6=0 State5=0 State4=0 State3=0 State2=0 State1=0 State0=0
PORTC=0x00;
DDRC=0xFF;
// Port D initialization
// Func7=Out Func6=Out Func5=Out Func4=Out Func3=Out Func2=Out Func1=Out Func0=Out
// State7=0 State6=0 State5=0 State4=0 State3=0 State2=0 State1=0 State0=0
PORTD=0x00;
DDRD=0xFF;
// Timer/Counter 0 initialization
// Clock source: System Clock
// Clock value: Timer 0 Stopped
// Mode: Normal top=0xFF
// OC0 output: Disconnected
TCCR0=0x01;
TCNT0=0x00;
OCR0=0x00;
// Timer/Counter 1 initialization
// Clock source: System Clock
// Clock value: Timer1 Stopped
// Mode: Normal top=0xFFFF
// OC1A output: Discon.
// OC1B output: Discon.
// Noise Canceler: Off
// Input Capture on Falling Edge
// Timer1 Overflow Interrupt: Off
// Input Capture Interrupt: Off
// Compare A Match Interrupt: Off
// Compare B Match Interrupt: Off
TCCR1A=0x00;
TCCR1B=0x00;
TCNT1H=0x00;
TCNT1L=0x00;
ICR1H=0x00;
ICR1L=0x00;
OCR1AH=0x00;
OCR1AL=0x00;
OCR1BH=0x00;
OCR1BL=0x00;
// Timer/Counter 2 initialization
// Clock source: System Clock
// Clock value: Timer2 Stopped
// Mode: Normal top=0xFF
// OC2 output: Disconnected
ASSR=0x00;
TCCR2=0x00;
TCNT2=0x00;
OCR2=0x00;
// External Interrupt(s) initialization
// INT0: Off
// INT1: Off
// INT2: Off
MCUCR=0x00;
MCUCSR=0x00;
// Timer(s)/Counter(s) Interrupt(s) initialization
TIMSK=0x01;
// USART initialization
// USART disabled
UCSRB=0x00;
// Analog Comparator initialization
// Analog Comparator: Off
// Analog Comparator Input Capture by Timer/Counter 1: Off
ACSR=0x80;
SFIOR=0x00;
// ADC initialization
// ADC Clock frequency: 691.200 kHz
// ADC Voltage Reference: AVCC pin
// ADC Auto Trigger Source: Free Running
ADMUX=ADC_VREF_TYPE & 0xff;
ADCSRA=0xA4;
SFIOR&=0x1F;
// SPI initialization
// SPI disabled
SPCR=0x00;
// TWI initialization
// TWI disabled
TWCR=0x00;
// Alphanumeric LCD initialization
// Connections specified in the
// Project|Configure|C Compiler|Libraries|Alphanumeric LCD menu:
// RS - PORTB Bit 0
// RD - PORTB Bit 1
// EN - PORTB Bit 2
// D4 - PORTB Bit 4
// D5 - PORTB Bit 5
// D6 - PORTB Bit 6
// D7 - PORTB Bit 7
// Characters/line: 16
lcd_init(16);
lcd_clear();
// Global enable interrupts
#asm("sei")
while (1)
{
// Place your code here
dataadc1=read_adc(0);
vin = (dataadc1 * 5.0)/1023.0;
suhu = vin * 100;
ftoa(suhu,2,temp);
lcd_gotoxy (0,0);
lcd_putsf("Suhu=");
lcd_puts(temp);
lcd_putsf(" c");
if(suhu > 40){
PORTD.2 = 1;
PORTD.3 = 0;
PORTC.0=0;
data1=50;
delay_ms(1000);
}
else {
PORTD.2 = 0;
PORTD.3 = 1;
PORTC.0=0;
data1=150;
delay_ms(1000);
}
}
}
This program was produced by the
CodeWizardAVR V2.05.0 Professional
Automatic Program Generator
© Copyright 1998-2010 Pavel Haiduc, HP InfoTech s.r.l.
http://www.hpinfotech.com
Project :
Version :
Date : 8/6/2016
Author : NeVaDa
Company :
Comments: cah lebay mencari puing2 asmara
Chip type : ATmega16
Program type : Application
AVR Core Clock frequency: 11.059200 MHz
Memory model : Small
External RAM size : 0
Data Stack size : 256
*****************************************************/
#include <mega16.h>
#include <stdlib.h>
#include <delay.h>
#include <math.h>
// Standard Input/Output functions
#include <stdio.h>
// Alphanumeric LCD Module functions
#include <alcd.h>
#define ADC_VREF_TYPE 0x40
#define servo1 PORTC.0
// Read the AD conversion result
unsigned int read_adc(unsigned char adc_input)
{
ADMUX=adc_input | (ADC_VREF_TYPE & 0xff);
// Delay needed for the stabilization of the ADC input voltage
delay_us(10);
// Start the AD conversion
ADCSRA|=0x40;
// Wait for the AD conversion to complete
while ((ADCSRA & 0x10)==0);
ADCSRA|=0x10;
return ADCW;
}
// Declare your global variables here
unsigned int dataadc1, y, data1;
float suhu, vin;
char temp[10];
// Timer 0 overflow interrupt service routine
interrupt [TIM0_OVF] void timer0_ovf_isr(void)
{
// Place your code here
y++;
if (y==900){y=0;}
if (y <=data1){ servo1=1;}
else{ servo1=0;}
}
void main(void)
{
// Declare your local variables here
// Input/Output Ports initialization
// Port A initialization
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In
// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T
PORTA=0x00;
DDRA=0x00;
// Port B initialization
// Func7=Out Func6=Out Func5=Out Func4=Out Func3=Out Func2=Out Func1=Out Func0=Out
// State7=0 State6=0 State5=0 State4=0 State3=0 State2=0 State1=0 State0=0
PORTB=0x00;
DDRB=0xFF;
// Port C initialization
// Func7=Out Func6=Out Func5=Out Func4=Out Func3=Out Func2=Out Func1=Out Func0=Out
// State7=0 State6=0 State5=0 State4=0 State3=0 State2=0 State1=0 State0=0
PORTC=0x00;
DDRC=0xFF;
// Port D initialization
// Func7=Out Func6=Out Func5=Out Func4=Out Func3=Out Func2=Out Func1=Out Func0=Out
// State7=0 State6=0 State5=0 State4=0 State3=0 State2=0 State1=0 State0=0
PORTD=0x00;
DDRD=0xFF;
// Timer/Counter 0 initialization
// Clock source: System Clock
// Clock value: Timer 0 Stopped
// Mode: Normal top=0xFF
// OC0 output: Disconnected
TCCR0=0x01;
TCNT0=0x00;
OCR0=0x00;
// Timer/Counter 1 initialization
// Clock source: System Clock
// Clock value: Timer1 Stopped
// Mode: Normal top=0xFFFF
// OC1A output: Discon.
// OC1B output: Discon.
// Noise Canceler: Off
// Input Capture on Falling Edge
// Timer1 Overflow Interrupt: Off
// Input Capture Interrupt: Off
// Compare A Match Interrupt: Off
// Compare B Match Interrupt: Off
TCCR1A=0x00;
TCCR1B=0x00;
TCNT1H=0x00;
TCNT1L=0x00;
ICR1H=0x00;
ICR1L=0x00;
OCR1AH=0x00;
OCR1AL=0x00;
OCR1BH=0x00;
OCR1BL=0x00;
// Timer/Counter 2 initialization
// Clock source: System Clock
// Clock value: Timer2 Stopped
// Mode: Normal top=0xFF
// OC2 output: Disconnected
ASSR=0x00;
TCCR2=0x00;
TCNT2=0x00;
OCR2=0x00;
// External Interrupt(s) initialization
// INT0: Off
// INT1: Off
// INT2: Off
MCUCR=0x00;
MCUCSR=0x00;
// Timer(s)/Counter(s) Interrupt(s) initialization
TIMSK=0x01;
// USART initialization
// USART disabled
UCSRB=0x00;
// Analog Comparator initialization
// Analog Comparator: Off
// Analog Comparator Input Capture by Timer/Counter 1: Off
ACSR=0x80;
SFIOR=0x00;
// ADC initialization
// ADC Clock frequency: 691.200 kHz
// ADC Voltage Reference: AVCC pin
// ADC Auto Trigger Source: Free Running
ADMUX=ADC_VREF_TYPE & 0xff;
ADCSRA=0xA4;
SFIOR&=0x1F;
// SPI initialization
// SPI disabled
SPCR=0x00;
// TWI initialization
// TWI disabled
TWCR=0x00;
// Alphanumeric LCD initialization
// Connections specified in the
// Project|Configure|C Compiler|Libraries|Alphanumeric LCD menu:
// RS - PORTB Bit 0
// RD - PORTB Bit 1
// EN - PORTB Bit 2
// D4 - PORTB Bit 4
// D5 - PORTB Bit 5
// D6 - PORTB Bit 6
// D7 - PORTB Bit 7
// Characters/line: 16
lcd_init(16);
lcd_clear();
// Global enable interrupts
#asm("sei")
while (1)
{
// Place your code here
dataadc1=read_adc(0);
vin = (dataadc1 * 5.0)/1023.0;
suhu = vin * 100;
ftoa(suhu,2,temp);
lcd_gotoxy (0,0);
lcd_putsf("Suhu=");
lcd_puts(temp);
lcd_putsf(" c");
if(suhu > 40){
PORTD.2 = 1;
PORTD.3 = 0;
PORTC.0=0;
data1=50;
delay_ms(1000);
}
else {
PORTD.2 = 0;
PORTD.3 = 1;
PORTC.0=0;
data1=150;
delay_ms(1000);
}
}
}
f. Cara Menggunakan Alat
Pertama hubungkan servo dengan mikrokontroller, kemudian pastikan UBEC 3A terpasang untuk penurun tegangan ke 5v dari 12v DC. setelah itu pastikan sumber tegangan lebih dari 1A. setelah semua siap. hubungkan servo dengan UBEC 3A untu Vcc dan GND. port signal dihubungkan ke PortC.0. untuk sensor suhu LM35 dihubungkan ke PortA.0. lcd dihubungkan ke PORTB. jika berhasil maka servo akan berputar sesuai suhu yang terukur.
No comments:
Post a Comment